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Abstract. We introduce the command xtserialpm to perform the portmanteau
test developed in Jochmans (2019). The procedure tests for serial correlation of
arbitrary form in the errors of a linear panel model after estimation of the regression
coefficients by the within-group estimator. The test is designed for short panels
and can deal with general missing-data patterns. The test is different from the
related portmanteau test of Inoue and Solon (2006) that is performed by xtistest

(Wursten 2018) in that it allows for heteroskedasticity. In simulations documented
below, xtserialpm is found to provide a much more powerful test than xthrtest

(Wursten 2018), which performs the test for first-order autocorrelation of Born
and Breitung (2016). Comparisons with xtistest and xtserial (Drukker 2003)
are also provided. These tests perform well under stationarity but break down
even under mild forms of heteroskedasticity.
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1 Introduction

Consider panel data on an outcome yi,t and a set of covariates xi,t, where i = 1, . . . , N

and t = 1, . . . , T . The data are independent across groups i but may be dependent

within groups. The workhorse specification to analyse such data is the regression model

yi,t = x>i,tβ + υi,t, υi,t = αi + εi,t,

where αi is a latent individual effect and εi,t is an idiosyncratic disturbance whose

mean is normalized to zero. These disturbances are taken to be mean independent of

the regressors and the individual effects but are otherwise allowed to be (conditionally)

heteroskedastic and correlated within each group i. Our aim is to test whether the

εi,t are correlated within groups. Although we do not make it explicit in the notation,

everything to follow applies to settings where the panel is unbalanced (possibly with

gaps) provided that missingness is at random. As such, the test discussed below is
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suitable for data with a group structure; the number of observations on a given group

need not be the same and the observations need not be collected over time. Examples

are data on student test scores stratified by classroom, or data on individual members

of households.

The command xtserialpm that we introduce in this note performs a test for the

(multivariate) null of no correlation at any order. The alternative is that at least one

error pair is correlated. As such, xtserialpm performs a portmanteau test. The test

performed is developed in Jochmans (2019). This test is different from the portmanteau

test of Inoue and Solon (2006) that is implemented in xtistest (Wursten 2018) as

it is robust to heteroskedasticity. This is important because requiring the errors to

have a constant variance within each group is often unrealistic. One situation where

heteroskedasticity will arise is when the error process is not in its steady state; this

is typical in short panels. A second situation is one where errors are conditionally

heteroskedastic and some of the regressors are non-stationary. An example here would

be a wage regression where the regressors include such characteristics as age, tenure and

experience, and number of children, all of which are non-stationary.

The portmanteau paradigm is to be contrasted with an approach that tests against

a specific alternative. Using a portmanteau test is of interest if no strong stand can

be taken on the particular form of correlation that should serve as the alternative.

This is relevant in many panel data applications, especially when the observations for a

given group do not have a natural ordering (such as time, for example). On the other

hand, there are cases where attention may be limited to first-order autocorrelation

patterns. In such a case, xtserial (Wooldridge 2002, pp. 282–283; Drukker 2003)

or its heteroskedasticity-robust version xthrtest (Born and Breitung 2016; Wursten

2018) may be of use.1 While tests against specific alternatives may have poor power

if the alternative is ill-chosen, they have the advantage that the dimension of the null

hypothesis is independent of the sample size. A portmanteau test, on the other hand,

necessarily has a null whose dimension grows with the length of the panel, T . Moreover,

xtserialpm and xtistest are not well suited for panels where T (T − 1)/2 is not small

relative to N .

The test that is the subject of this paper is introduced in Section 2. The syntax

of the Stata command xtserialpm that implements the test is given in Section 3 and

1. Under homoskedasticity, xtqptest (Born and Breitung 2016; Wursten 2018) can also be used to
test for correlation up to a fixed order.
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an example is provided in Section 4. The results of a simulation study are given in

Section 5. The Monte Carlo analysis compares the performance of xtserialpm with

xtistest, xtserial, and xthrtest in various settings. While xtistest and xtserial

are competitive under homoskedasticity they are unreliable under heteroskedasticity.

Although xthrtest is designed to be size correct it is found to have very poor power.

Moreover, it is virtually unable to detect most violations from the null, even those for

which it was designed.

2 The test statistic

The presence of the group-level effect αi complicates the construction of a test based on

the data in levels. The approach followed in Jochmans (2019) is to test the null that the

difference between all pairwise within-group correlations are zero. There are T (T −1)/2

covariances and so

q :=
T (T − 1)

2
− 1 =

(T + 1)(T − 2)

2

linearly-independent differences. There are many ways of selecting q such differences.

How they are chosen is irrelevant in practice as each will deliver numerically the same

test statistic. A convenient way for notational purposes is as follows. Let ∆ denote the

first-differencing operator, i.e., ∆υi,t = υi,t − υi,t−1. Then we test the null

H0 : E(υi,t′∆υi,t) = 0 for all t and each t′ ≤ t− 2 and t′ = t+ 1,

against the alternative

H1 : E(υi,t′∆υi,t) 6= 0 for some t and t′ ≤ t− 2 or t′ = t+ 1.

An exercise in adding-up shows that this indeed involves q moments. The rationale for

them comes from the observation that

E(υi,t′∆υi,t) = E(εi,t′∆εi,t) + E(αi∆εi,t)

= E(εi,t′∆εi,t),

= E(εi,t′εi,t)− E(εi,t′εi,t−1)

which is indeed the difference between two covariances. The main transition here uses

E(αi∆εi,t) = E(αi E(∆εi,t|αi)) = 0, which follows from iterated expectations and the

assumption that E(εi,t|αi) = 0.
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The q restrictions that make up our null can be written compactly as

E(Υ>i Dυi) = 0,

where we have introduced the (T − 1)× q matrix

Υ i :=



0 0 0 0 · · · 0 · · · 0 υi,3 0 · · · 0

υi,1 0 0 0 0 0 0 υi,4
...

0 υi,1 υi,2 0 0 0
...

. . . 0
...

. . .
... 0 0 υi,T

0 0 0 0 · · · υi,1 · · · υi,T−2 0 0 · · · 0


,

and the T × 1 vector υi := (υi,1, . . . , υi,T )>, and write D for the (T − 1) × T matrix

first-difference operator; so Dυi = (∆υi,2, . . . ,∆υi,T )>, for example. The left block of

the matrix Υ i is reminiscent of the instrument matrix for GMM estimator of dynamic

panel models (see, e.g., Arellano 2003, pp. 88–89). The right block does not appear

there as it would not provide valid moment conditions in that context. The null can be

tested using a minimum-distance statistic in a sample version of the moment restrictions

as soon as three observations per group are available. Note that the dimension of the

null grows with T . As such, the approach is designed for short panels, where q is small

compared to N .

To make the test operational the unobserved υi,t need to be replaced by an estimator.

For this an estimator of β is needed. xtserialpm uses the within-group least-squares

estimator (as computed by xtreg, fe),

b :=
(∑N

i=1X
>
i MXi

)−1∑N
i=1X

>
i Myi,

where we have collected all observations for a given group in yi := (yi,1, . . . , yi,T )>

and Xi := (xi,1, . . . ,xi,T )>, and M denotes the usual T × T projection matrix that

transforms observations into deviations from within-group means. Given b, the residuals

ui,t := yi,t − x>i,t b

can be used as estimators of the υi,t.

We then define

si := U>i Dui −
(∑N

j=1U
>
j DXj

)(∑N
j=1X

>
j MXj

)−1
X>i Mui,
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where the matrix U i is the sample version of Υ i constructed using the residuals ui,t in

place of the unobservable υi,t, i.e.,

U i :=



0 0 0 0 · · · 0 · · · 0 ui,3 0 · · · 0

ui,1 0 0 0 0 0 0 ui,4
...

0 ui,1 ui,2 0 0 0
...

. . . 0
...

. . .
... 0 0 ui,T

0 0 0 0 · · · ui,1 · · · ui,T−2 0 0 · · · 0


,

and we have introduced ui := (ui,1, . . . , ui,T )>. The test statistic for our null can then

be written as the quadratic form

s>V −1s,

where s :=
∑N

i=1 si and V is an estimator of the variance of s. xtserialpm uses the

uncentered estimator

V :=
∑N

i=1 sis
>
i

as default. Use of a centered variance estimator is available as an option. In the

simulations reported on below we found that use of the centered estimator is power

enhancing but comes at the expense of size distortion in small samples.

Our test statistic has an interpretation that explains its form. Because the second

part of si sums to zero we have

s =
∑N

i=1 si =
∑N

i=1U
>
i Dui.

This is a sample version of the moments we are aiming to test. The second part of si is

present to ensure that V is a consistent estimator of the variance of s. Moreover, the

naive variance estimator
∑N

i=1(U>i Dui)(U
>
i Dui)

> ignores the fact that the statistic

is constructed with residuals rather than (unobservable) errors and will generally not

be consistent.

Under the null,

s>V −1s
d→ χ2

q,

as N → ∞. A test of our null then amounts to comparing the test statistic to the

quantiles of the χ2
q distribution. Large values are evidence against the null of no serial

correlation. This test is consistent against any alternative except the one where all
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covariances are constant.2 Asymptotic power results and calculations for special cases

are provided in Jochmans (2019).

3 Stata command xtserialpm

xtserialpm is a stand-alone routine that can run without first running xtreg. The

data must be xtset prior to executing xtserialpm. Unbalanced panel data is allowed.

The command has the following syntax:

xtserialpm depvar
[
indepvars

][
if
][

in
]
,
[
center, noisily

]
The option center returns the test statistic computed with centered covariance matrix

as discussed above.

The option noisily displays the preliminary within-group estimator. The output is the

same as that produced by xtreg, fe.

Running the command produces a table with the value of the test statistic and the

associated p-value. The layout of the table mimics the layout of the table produced by

xtserial.

The following output is saved to r:

r(stat) returns the value of the test statistic;

r(df) returns the degrees of freedom of its limit distribution;

r(p) returns the p-value of the test.

Help is available by typing help xtserialpm.

4 Example

We use the data from the illustration in Drukker (2003). The following extract loads

the data.

use http://www.stata-press.com/data/r8/nlswork.dta
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

2. This is due to the presence of the fixed effects, and the same is true for all other available tests of
serial correlation in a panel setting.
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xtset idcode year
panel variable: idcode (unbalanced)
time variable: year, 68 to 88, but with gaps

delta: 1 unit

The portmanteau test is computed as

xtserialpm ln_wage c.age##c.age ttl_exp c.tenure##c.tenure i.south if year<=70

and delivers the output

Jochmans portmanteau test for within-group correlation in panel data.
H0: no within-group correlation

Chi-sq( 2) = 25.658
Prob > Chi-sq = 0.0000

The result provides strong evidence for the presence of serial correlation in the errors.

To compute the test statistic using a centered covariance matrix estimator use the

center option as

xtserialpm ln_wage c.age##c.age ttl_exp c.tenure##c.tenure i.south if year<=70, center

The output is

Jochmans portmanteau test for within-group correlation in panel data.
H0: no within-group correlation

Chi-sq( 2) = 26.180
Prob > Chi-sq = 0.0000

The test statistic is slightly larger and our initial conclusion unaltered.

To perform the test of Inoue and Solon (2006) in this example we first generate residuals

from the within group regression by typing

quietly xtreg
ln_wage c.age##c.age ttl_exp c.tenure##c.tenure i.south if year<=70, fe

predict u, residuals

The test is then performed on these residuals

xtistest u, lags(all)

By default, xtistest checks for correlation (in the within-group residuals) up to second
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order only.3,4 Here, xtistest is envoked with the lag option set to all, so that the

command yields the portmanteau test as originally introduced in Inoue and Solon (2006).

The output of the test is

Inoue and Solon (2006) LM-test on variables u
Panelvar: idcode
Timevar: year

Variable IS-stat p-value N maxT balance?

u 159.44 0.000 2206 3 gaps

Notes: Under H0, LM ~ chi2((T-1)(T-2)/2)
H0: No auto-correlation of any order.
Ha: Auto-correlation of some order.

The same conclusion regarding our null is reached.

5 Simulations

We provide size and power comparisons between xtserialpm, xtistest, xthrtest,

and xtserial. We consider different specifications for the errors and provide results

for different panel dimensions. In all cases, outcomes were generated with fixed effects

drawn from a standard normal and with two regressors—the first standard normal and

the second zero/one according to the toss of a fair coin—each with a coefficient set

to unity. From the time-series literature, we consider alternative specifications where

the errors follow an AR(1) or MA(1) process. Both xtserial and xthrtest were

designed specifically to detect such forms of serial correlation. It is straightforward to

concoct specifications of the error process where these tests will not be able to detect

any deviation from the null.

Our first set of results concerns first-order autoregressive error processes of the form

εi,t = ρ εi,t−1 + ηi,t, t = 2, . . . , T, |ρ| < 1,

where the innovations ηi,t are independent standard-normal. Here, the null corresponds

3. For any choice of lag xtistest still delivers a portmanteau test, albeit based on fewer moment
restrictions, and not a test for serial correlation up to a given order. Note, furthermore, that serial
correlation in the within-group residuals need not be most pronounced at low orders even if the
true errors (in levels) are most-strongly correlated at small lags. A lower choice for lag need not
improve the power of the test.

4. If interest lies only in testing that the first T ′ < T covariances are the same xtserialpm can be
applied without modification to the subpanel obtained by dropping all cross sections t > T ′. This
will deliver a valid test.
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to ρ = 0. In Specification (A1) we draw the initial value εi,1 from its steady-state

distribution. This implies that the error process is strictly stationary (and, hence,

homoskedastic). In Specification (A2) we set εi,1 = 0 for all groups. This introduces

time-series heteroskedasticity for any value of the autoregressive coefficient. Moreover,

we have

E(ε2i,1) = 0, E(ε2i,2) = 1, E(ε2i,3) = 1 + ρ2, E(ε2i,4) = 1 + ρ2 + ρ4,

and so on. The heteroskedasticity is mild but present both under the null and the

alternative.

We present simulations results for panels with N = 100 and T ∈ {3, 6, 9}. This

corresponds to q ∈ {2, 14, 35} which, relative to N , can be considered small, moderate

and large. Results are reported in Figure 1 by means of power plots (as obtained over

10, 000 replications). For each test the power curve plots the rejection frequency of the

test against the value for ρ ∈ (−1, 1) that was used to generate the data. A test is size

correct if its rejection frequency under the null equals its size (here set to 5%; the level

at which the horizontal axis is set). For a given alternative the rejection frequency is the

complement of the probability of making a type II error. Hence, given two tests that

are both size correct, the one with a higher rejection frequency is superior. The plots

in Figure 1 contain the power curves for the portmanteau tests xtserialpm (full) and

xtistest (dashed) as well as for the tests targeted to detect autocorrelation at first-

order, xthrtest (dotted) and xtserial (dashed-dotted). Note that xthrtest requires

T ≥ 4 and so is absent from the plots for T = 3; T ≥ 3 suffices for the three other tests.

The left plots shows that, under homoskedasticity, all tests control size well. xtserial

performs best here, which is not surprising given that this is the ideal setting for this

test. The portmanteau tests both do well and are roughly equally able to reject the

null when it is false. xtserialpm does better in the shortest panel while xtistest does

better in the longest panel. Both observations arise from the fact that xtserialpm tests

more moment conditions. xthrtest lacks power against most alternatives. Although

its ability to detect violations from the null improves somewhat with the length of the

panel, even in the longest panel considered here it is uniformly outperformed by all

other tests.

The right plots shows the impact of time-series heteroskedasticity on all the tests.

Being robust to heteroskedasticity, both xtserialpm and xthrtest continue to be size

correct. Moreover, the heteroskedasticity improves the power of xtserialpm relative
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Figure 1: Power against first-order autoregressive alternatives. Power is reported for
xtserialpm (solid line), xtistest (dashed line), xthrtest (dotted line), and xtserial

(dashed-dotted line).

to the stationary case, especially for T = 3. xthrtest, on the other hand, continues

to struggle to detect any violation of the null. Both xtserial and xtistest are now

severly size distorted, with their probability of a type I error far exceeding 5%. Because

|ρ| < 1 the error process is mean reverting and so will become stationary as t → ∞.

Moreover, the errors become homoskedastic for large values of t. This explains why

the performance of xtserial improves as T grows. Of course, no such improvement

occurs for xtistest. On the other hand, we stress that the properties of xtserial and

xtistest would not improve if instead N would increase.
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Our second set of simulation results involves moving-average processes of order one,

that is,

εi,t = ηi,t + θηi,t−1 t = 1, . . . , T, θ ∈ (−∞,+∞),

where the innovations ηi,t are again independent standard-normal. The null corresponds

to θ = 0. In Specification (B1) we draw the initial value ηi,0 from the standard normal

distribution, again implying stationarity. In Specification (B2) we set ηi,0 = 0. This

leads to heteroskedasticity under the alternative but not under the null. This is different

from Specification (A2). Here, as errors are homoskedastic under the null all tests will

remain size correct. Note that heteroskedasticity is limited to the first observation, εi,1,

whose variance is equal to 1; εi,2, . . . , εi,T all have variance 1 + θ2.

Figure 2 provides the power curves for these two specifications. We plot power

against the first-order autoregressive coefficient (under stationarity), ρ. This coefficient

is one-to-one with θ in the sense that

θ =
1 +

√
1− 4ρ2

2ρ

when ρ 6= 0 and θ = 0 if ρ = 0. Note that − 1
2 ≤ ρ ≤

1
2 . The main conclusions from the

autoregressive specifications carry over. Both xtserial and xtistest do well under

homoskedasticity but have erratic power patterns under heteroskedasticity. xthrtest,

although size correct, continues to be incapable to detect any violation from the null.

xtserialpm performs very well in all specifications and, as such, yields the most reliable

test.

6 Conclusion

We have introduced the command xtserialpm to test for arbitrary patterns of serial

correlation in the errors of a fixed-effect regression model estimated from short panel

data. Contrary to the existing portmanteau test performed by xtistest it is robust to

heteroskedasticity. Both tests are designed for micropanels. For macropanels, where T is

not small relative to N only tests against specific alternatives can properly control size.

Such tests are implemented in xtserial and xthrtest. Simulations evidence shows that

even mild forms of heteroskedasticity make the properties of xtistest and xtserial

break down. Unfortunately, heteroskedasticity in short panels is the rule rather than the

exception. Further, xthrtest, although size-correct under heteroskedasticity, is far less

powerful than xtserialpm even when the alternative under question is characterized
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Figure 2: Power against first-order moving-average specifications. Power is reported for
xtserialpm (solid line), xtistest (dashed line), xthrtest (dotted line), and xtserial

(dashed-dotted line).

by well-pronounced dependence at first-order. The conclusion from the theory and

simulation evidence presented here is that, when heteroskedasticity is suspected, only

xtserialpm will provide a suitable test when T (T − 1)/2 is small compared to N . On

the other hand, only xthrtest is guaranteed to be size-correct when T (T −1)/2 is large

relative to N . However, it may not pick up violations from the null if they do not occur

at first-order. Furthermore, even if they do, our simulations show that the test needs

the sample size to be substantial to be able to safeguard against type II errors with

reasonable probability.
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